PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression

Jiao, S., Xia, W., Yamaguchi, H. et al.

To explore whether a crosstalk exists between PARP inhibition and PD-L1/ PD-1 immune checkpoint axis, and determine if blockade of PD-L1/ PD-1 potentiates PARP inhibitor (PARPi) in tumor suppression.

Breast cancer cell lines, xenograft tumors and syngeneic tumors treated with PARPi were assessed for PD-L1 expression by immunoblotting, immunohistochemistry and FACS analyses. The phospho-kinase antibody array screen was used to explore the underlying mechanism of PARPi-induced PD-L1 upregulation. The therapeutic efficacy of PARPi alone, PD-L1 blockade alone, or their combination was tested in syngeneic tumor model. The tumor-infiltrating lymphocytes and tumor cells isolated from syngeneic tumors were analyzed by CyTOF® and FACS to evaluate the activity of anti-tumor immunity in the tumor microenvironment.

PARPis upregulated PD-L1 expression in breast cancer cell lines and animal models. Mechanistically, PARPi inactivated GSK3β, which in turn enhanced PARPi-mediated PD-L1 upregulation. PARPi attenuated anticancer immunity via upregulation of PD-L1, and blockade of PD-L1 re-sensitized PARPi-treated cancer cells to T cell killing. The combination of PARPi and anti-PD-L1 therapy compared with each agent alone significantly increased the therapeutic efficacy in vivo.

Our study demonstrates a crosstalk between PARPi and tumor-associated immunosuppression, and provides evidence to support the combination of PARPi and PD-L1 or PD-1 immune checkpoint blockade as a potential therapeutic approach to treat breast cancer.


Jiao, S., Xia, W., Yamaguchi, H. et al. "PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression" Clinical Cancer Research (2017): 3,711–20